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"[s the solar convective velocity field capable of
supporting classical turbulent small-scale dynamo
action?" \We determine if the dynamo in realistic
simulations of solar surface convection is the same
as in idealistic simulations by measuring the

wavelength-dependent energy transfer rates.

We compare the dynamo generation of magnetic field
in three incrementally more realistic simulations in
both the initial (kinematic) and saturated states.

e |sotropic, homogeneous, incompressible
turbulence (HoT)

* Boussinesq convection

 MURaM: realistic solar magnetoconvection code
(Vogler et al. 2005) including

- Strong stratification
- Full compressibility
- Partial ionization

- Radiative transfer

Methods

Transfer functions (below) measure the conversion
of kinetic energy to magnetic energy through the
magnetic tension force: 7 (g)<0O measures kinetic

energy lost from wavenumber g doing work against
the magnetic tension force at all wavenumbers;
T (k)>0 measures the magnetic energy generated at

wavenumber k by stretching of field lines by all
wavenumbers of fluid motions.
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The transfer functions measure one-to-all transfers
from given kinetic, g, and magnetic, k,
wavenumbers. We also use shell-to-shell transfer
functions which measure one-to-one transfers
between each g to each k.
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Saturated: Horizontal cuts (at average height of r=71 for MURaM) of vertical
velocity field (v ): blue for upflows, red for downflows.
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Saturated: Horizontal cuts (at average helght of r=1 for MURaM) of vertical
magnetic field (B): cyan and brown for opposite polarities.

Magnetic structures look very similar for all three
dynamos (the magnetic field is concentrated in the
turbulent downflows for MURaM).
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Kinematic (top) and saturated (bottom): Kinetic (green) and magnetic (blue
dashed) energy spectra versus wavelength (in Mm for MURaM).

Magnetic spectra for all three dynamos are also
similar. The saturated state of MURaM has a factor
of 10 smaller magnetic to kinetic energy ratio due to
convective losses at the bottom boundary.

References
* Vogler et al., A&A 429, 335 (2005).

 J. Pietarila Graham, R. Cameron, M. Schussler,
Turbulent small-scale dynamo action in solar
surface simulations, ApJd 714, 1606-1616 (2010);
arXiv:1002.2750.

 R. Moll, J. Pietarila Graham, J. Pratt, R. H.
Cameron, W.-C. Muller, and M. Schussler,

Universality of the Small-Scale Dynamo
Mechanism, Apd accepted 2011; arXiv:1105.05406.
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Saturated state: The saturation mechanism is seen as Lorentz-force feedback, 7 _(g,k)<0, with the

magnetic field suppressing larger-wavenumber velocity fluctuations. The production of magnetic energy
is also seen to shift to smaller wavenumbers, g. MURaM is more comparable to a much weaker HoT
simulation (higher MURaM Reynolds numbers are needed for a stronger dynamo).

Conclusions

- 95% of the magnetic energy in MURaM is produced via magnetic tension/stretching of field lines.

- The shell-to-shell transfers are the same for all 3 dynamos: the small-scale dynamo mechanism does
not depend on large-scale forcing, isotropy, nor on added physical effects in MURaM (universa

: PM«1 dynamos have been demonstrated for HoT. MURaM has the same dynamo as HoT = the

dynamo will work for MURaM (and the Sun) even at small magnetic Prandtl number. The solar
convective velocity field is capable of supporting classical turbulent small-scale dynamo action.

ity).




